Style Guide for Theses, Dissertations and Research Reports
CONTENTS

1 INTRODUCTION

2 THE STRUCTURE AND FORM OF THESES, DISSERTATIONS AND RESEARCH REPORTS

2.1 The Structure and form of theses – preliminaries

2.1.1 Title and title page

2.1.2 Candidate’s declaration

2.1.3 Abstract

2.1.4 Dedication

2.1.5 Acknowledgements

2.1.6 Contents

2.1.7 List of figures

2.1.8 List of tables

2.1.9 List of symbols

2.1.10 Nomenclature

2.2 Body of the theses

2.2.1 Introductory chapter

2.2.2 Central chapters

2.2.3 Concluding chapter

2.2.4 Appendices

2.2.5 Variations in thesis structure

2.3 References and bibliography

2.3.1 Referencing systems

2.3.2 Citations

2.3.3 Punctuation guidelines

2.3.4 Examples of citation for different types of publication

2.3.5 Bibliography

3 HEADINGS AND NUMBERING

3.1 Rules of numbering

3.2 Typeface and format

3.3 Examples of systems of headings

4 STYLES AND PUNCTUATION

4.1 Text structure
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>Word choice</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Tenses</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Sentence structure</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Paragraphing</td>
</tr>
<tr>
<td>4.2</td>
<td>Conventions</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Capitals</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Acronyms</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Spelling</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Abbreviations</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Punctuation</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Pagination</td>
</tr>
</tbody>
</table>

5 NON VERBAL MATERIAL

5.1 Numerals
5.2 Mathematics
5.3 Tables
5.4 Illustrations
5.4.1 Graphs
5.4.2 Drawings, diagrams and photographs

6 PRODUCTION OF THE THESIS

6.1 Type Layout
6.2 Illustrations

1. EDITING AND REVISING

7.1 Checking, rectifying and polishing
7.1.1 Integrity edit
7.1.2 Logical progression edit
7.1.3 Text and language edit
7.2 Graphic material
7.3 Time and space separations
7.4 The external viewpoint
7.5 Rewriting
7.6 Readability of texts
7.7 Computer editing

(Updated in 2017 and approved by the Science Faculty Board on 11 October 2017)
7.8 Outline processor, spelling checker, cross referencing facilities, index and/or contents

8 LAWS AND REGULATIONS

8.1 Copyright Laws

APPENDICES
APPENDIX A Specimen Title Page
APPENDIX B Specimen Contents Page
APPENDIX C Specimen List of Figures
APPENDIX D Specimen List of Tables
APPENDIX E Specimen Page Layout

BIBLIOGRAPHY
1. **INTRODUCTION**

This guide is intended for postgraduates who are preparing to submit their thesis, dissertation or research report for examination. The intention is to provide a concise guide covering all aspects of the required document. It does not, however, aim to provide comprehensive information on detailed stylistic features. Additionally, there are usages which are specific to each of the many subject areas falling under the control of the Faculty of Science. Candidates should therefore consult their supervisors about the specific requirements of their topic and discipline.

It should be noted that the terms thesis, dissertation and research report have specific meanings: a ‘thesis’ is the document submitted for the degree of Doctor of Philosophy; a ‘dissertation’ for the degree of Master of Science by research only, and a ‘research report’ for the degree of Master of Science by coursework and research report. The research report should take the form of a ‘mini’ dissertation.

The word ‘thesis’ is used in this document for simplicity, but the information given applies to theses, dissertations and research reports.

2. **THE STRUCTURE AND FORM OF THESES, DISSERTATIONS AND RESEARCH REPORTS**

This chapter aims to provide information on all matters relating to form and structure in thesis writing; however it is not intended to be an exhaustive resource.

2.1 **The structure and form of theses - preliminaries**

The essential elements of the Theses are presented below in the order in which they should normally appear.

- Title and Title page
- Candidate's Declaration (Signed)
- Abstract
- Dedication
- Acknowledgements
- Contents
- List of Figures
- List of Tables
- List of Symbols
- Nomenclature
- Introductory Chapter
- Central Chapters
- Concluding Chapter
- References
- Bibliography
- Appendices

2.1.1 **Title and title page**

A specimen title page is shown in Appendix A. The following information is given on the title page.

Title:

The title should indicate the contents and scope of the thesis in as few words as possible. Phrases like ‘a report on investigations into….’ and ‘observations on some aspects of’ add nothing significant to the title and should be avoided. While the title should be as brief as possible it should be accurate, descriptive and comprehensive, clearly indicating the subject of the investigation. It is most important in the view of the Higher Degrees Committee that theses’ titles are fully relevant to the contents of the work to avoid misunderstandings at the time of examination.

The title is best typed in capitals, with a space between each letter and three spaces between words.

Author's Name:

The full forenames followed by surname are usually given under the title. They should be typed with the first letter of each name in capital letters and the remainder in lower case.

Thesis Statement:

The following are examples of appropriate wording.

Degree of Doctor of Philosophy:
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy.'

Degree of Master of Science by research only:

'A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science.'

Degree of Master of Science by coursework and research:

'A research report submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science.'

2.1.2 Candidate's declaration

University regulation G.28 specifies the following:

'A candidate shall submit a formal declaration stating whether the thesis is his/her own unaided work, or if assisted, what assistance she/he has received.'

An example of the conventional form of declaration is as follows:

DECLARATION

I declare that this thesis* is my own, unaided work. It is being submitted for the Degree of Doctor of Philosophy** at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other University.

(Signature of candidate)

____________________day of _______________________20________________

* dissertation or research report as applicable

** or Master of Science as applicable.

This declaration should appear on a separate page and each copy of the thesis should be individually signed by the candidate.

2.1.3 Abstract

The abstract is a brief informative summary of not more than 150 words for a master's dissertation or research report and not more than 350 words for a doctoral thesis. It outlines the purpose of the thesis, the research methods and procedure employed, as well as the major results and conclusions. The abstract should always start with a topical sentence that is a central statement of the major theme of the thesis.

The abstract is extremely important. It should give as concisely as possible the significant facts, especially anything new, the main conclusions and any recommendations. An abstract should be written in normal and not telegraphic style. (See section 8.2 on the University's requirements for abstracts.)

2.1.4 Dedication

This is a brief, optional statement paying tribute to the writer's spouse, family, or other associated person. It is typed centrally on a separate page starting on the chapter line and does not require a heading, e.g.
2.1.5 Acknowledgements
Assistance received in carrying out the work in preparing a thesis should be acknowledged, although it is not usual to acknowledge routine checking, minor assistance or general advice. It is, however, usual to acknowledge financial assistance, permission to publish, as well as special facilities provided by a company, university or research institution.

2.1.6 Contents
The contents should be given on a separate sheet and follow the plan of the structure of the thesis (Section 2.1 above) and the headings in the thesis itself. The contents should only contain the first three levels of headings in the thesis. It must also include the relevant page numbers. (A specimen contents page is shown in Appendix B.)

2.1.7 List of figures
A list of figures follows the contents on a new page, and precedes a list of tables. (A specimen list of figures is shown in Appendix C.)

2.1.8 List of tables
A list of tables follows the list of figures on a new page. (A specimen list of tables is shown in Appendix D.)

2.1.9 List of symbols
Each thesis should provide a list detailing the symbols for physical quantities used. These symbols vary from discipline to discipline and candidates should consult their supervisors with regard to the correct symbols for their field of research.

2.1.10 Nomenclature
Authors should avoid jargon and abbreviations which are not in common use in the field or which have not been defined. If there are acronyms or unusual technical terms, these should be defined in alphabetical order in a table or listed. If there are only a few they may be defined when they first occur in the text.

2.2 Body of the thesis
In most theses the chapters may readily be divided into three categories: the introductory chapter or chapters; the central chapters comprising the major report of the study, divided into logical chapter divisions (publishable/published manuscripts); and the concluding chapter or chapters, which should contain the findings, conclusions and recommendations of the report.

2.2.1 Introductory chapter(s)
The first chapter, or chapters, should contain the following items:

- A clear and complete statement of the problem investigated, the hypotheses tested or the purpose of the study
- A validation or justification of the problem, which eloquently establishes the importance of the problem through substantiated arguments. It is often appropriate, at this point to indicate the limitations of the undertaking and to define words unique to the study or used in a restricted or unusual manner in reporting the investigation.
- A preview of the organisation of the thesis. This will make it easy for the reader to see at a glance the relationship between the various parts of the work.
- A résumé of the history and present status of the problem by means of a literature survey comprising a brief critical review of previous investigations of this and closely related problems. The contribution of these to the question as a whole should be made clear, together with the fact that the investigation arises from fallacies, inadequacies or inaccuracies of earlier studies.
- A statement of the sources of data, the method of procedure (experimental techniques) and the treatment of the findings. In a classic thesis of an experimental nature, a separate chapter (Materials and Methods) is ordinarily devoted to these topics.

2.2.2 Central chapters
It is impossible to give specific directions for organising the findings of all studies, because of the wide variety of topics investigated, techniques employed, and kinds of data accumulated. Suffice it to say that the chapters of this
portion of the thesis are the thesis – they are the candidate’s contribution to knowledge. All other portions of the thesis are subordinate to what actually has been discovered and is being made known in the thesis. The candidate should, therefore, take great pains to present their material in a clear and orderly fashion, in terms that will be readily understood.

The organisation and distribution of content should be such that each chapter represents an important division of the subject investigated and reported. Each chapter, other than the introductory and final chapters, can be considered as standalone scientific manuscripts. As such they comprise:

- A contextualised introduction which also provides a statement of the portion of the overall problem;
- A description of the materials and methods used in connection with this part of the overall investigation;
- A description of the collected data;
- A discussion contextualising the information with the published literature; and
- A concluding section/summary indicating the contribution of the findings.

Thus in many cases the central chapters represent a series of publications. Indeed this format is often referred to as a ‘Thesis by Publication’ (see 2.2.5).

NB For PhD candidates at least one publication must be submitted to a peer-reviewed journal prior to submission of the thesis for examination.

2.2.3 Concluding chapter(s)

The concluding chapter, or chapters, should be a summary, restating the developments of the previous chapters and showing succinctly the more important findings and conclusions of the whole study. It is here that the author is showing how their findings fit into what is known about the topic and how they are advancing understanding of the topic. Obviously the summary sections/conclusions of each of the central chapters/publications form the basis of this concluding chapter. The author may also list unanswered questions that can be the basis of future studies. It is not unusual that synthesis of the introductory chapter and concluding chapter result in a review (or mini review) manuscript for publication.

1.2.4 Appendices

Appendices are convenient places for recording complicated mathematical or other formulae, descriptions of experiments or apparatus, and any other specialised or lengthy material such as computer programme listings, copies of spectra or other instrumental outputs that would otherwise detract from the readability of the text. The reader should be able to study or refer to these later, and only if they wish to do so, after they have read the main work. Appendices must be numbered or lettered consecutively in large print at the top right-hand corner of the page to facilitate their location in the text. Each appendix must start on a new page. The appendices should be placed immediately before the list of references.

2.2.5 Variations in thesis structure

As previously mentioned a PhD thesis may be submitted for examination in ‘classic’ format or via ‘publication’. It is important to realise that there is acceptable variation between these two styles. For example a PhD may be submitted for examination with one or two papers already published and a few other chapters that will form the basis for future publications (i.e. after/during examination). Other than the Faculty’s basic rule that at least one manuscript has been submitted for peer review before examination these variations in the PhD structure are acceptable and can be submitted for examination. The ultimate number of publications that emanate from a PhD will vary depending on the subject matter and the broader area of study. Students are encouraged to discuss the research outputs from the degree with their supervisor(s) from the start of their registration.

If a thesis which includes publications is to be submitted for examination there are a few points that should be taken into consideration whilst preparing the thesis:

- Any PhD must make (through research work) an original (novel) and significant contribution to knowledge in the chosen field. Thus the thesis should contextualise the research in an overarching introduction, critically set the collected data in the context of existing literature and should evaluate the contribution that the research makes to the advancement of the research area. A thesis which involves a series of publications must clearly do the same. However, this demands taking to account the fact that each published paper has its own introduction, methodology, results and discussion sections.

It is therefore highly likely that there will be repetition of information in a thesis that includes publications. It is important to try to keep this to a minimum. This could be achieved for instance by reducing information in the contextualising introduction and presenting it in the introduction of the paper/chapter.

The writing of the concluding chapter for the thesis is made easier by the fact that each published paper has a conclusion. However, whilst drawing the publications/chapters together and critically appraising them in the coherent and synthesising concluding section of the thesis it is important to remember to demonstrate how all of the research is advancing understanding in the field of study.
In the case of multi-authored papers it is essential that the role played by each author is highlighted in an unambiguous statement. This statement can be placed at the start or end of the chapter/publication in the thesis and should include the details of the publication viz. title, journal name, page numbers, impact factor and must also allocate a percentage involvement of each author and describe their actual contribution. For example:

Tshabalala – 60% (conducted the research, wrote the manuscript);
Simatale 15% (assisted with statistical analyses and their interpretation);
Radebe 25% (supervisor, original idea, funded the research and reviewed the manuscript).

Advisably the statement should be certified by all authors concerned.

Alternatively early on in the thesis (e.g. after the abstract) an additional section entitled ‘structure and outputs of the thesis’ can be included in the thesis. This section should explain the structure of the thesis and can list the research outputs for each chapter (conference presentations and publications) and also provide the details of the involvement of each of the authors (as above).

In any thesis it is essential to establish and retain coherence to the information (story) that is being presented. When a series of published papers are being linked into a thesis the coherence becomes particularly important. For instance the conclusion of one published paper may not directly link to the introduction of the following paper in the thesis. In such a case it would be necessary (and is therefore acceptable) to insert a written discussion leading the reader to the next set of information (paper/chapter).

Different journals have different formatting for the manuscripts therefore the different papers within the thesis may have different formats. This is not a problem. However, changing all of the chapters/papers to the same format can add to the overall style and appearance of the thesis. On the other hand, presenting the thesis with the different formats can emphasise the fact that the work is already published. It is therefore recommended that this point be discussed with the supervisor.

1.3 References and bibliography
References should be chosen and cited to:
- Indicate the source of the writer’s statements;
- Acknowledge another person’s work; and
- Provide a source of additional information.

The relevance of any reference should be carefully considered and the number of references kept to a necessary minimum. All references appear together at the end of the publication. The citations must be given in sufficient detail for easy retrieval of the information.

2.1.1 Referencing systems
There are a number of different referencing systems. The two most commonly used in scientific literature are the Harvard system and the Numerical system. Candidates should consult their supervisors on this matter. You should note that styles for citations vary tremendously from discipline to discipline, and that not all the points mentioned (e.g. title of paper, or inclusive pagination) may be necessary.

Harvard systems
The references are referred to in the text by the author’s surname followed by the year of publication (in parentheses) and are listed in alphabetical order by year of publication in the list of references. If the same author is cited more than once for a given year the letters a,b,c are used to distinguish the articles. If their citation is only to a particular page then this is shown by the use of a colon followed by page numbers (after the date).

If there are more than three authors, only the first (senior) author’s name is given in the text followed by ‘et al.’ Note the recommended layout of the reference list.

Specimen text
A succinct account of the basics of interactive television programming has recently been given (Bolton, 1981). Nyhan and Johnson(1980: 399) have summarised the economic implications. Robertson (1979) has reviewed some of the technical aspects. Veith (1981a, 1981b) has provided the best all-round accounts of teletext and videotext.

REFERENCES

The style used in the abovementioned citations is based on ISO 690, International Organization for Standardization (1984).

Numerical system
The references are numbered in ascending order in the text, and are listed in that order in the list of references. In the text itself, the numerals are typed slightly above the list of the text.

Specimen text

REFERENCES

The style used in the abovementioned citations is based on ISO 690, International Organization for Standardization (1984).

2.1.2 Citations
The order in which items in the references are listed is as follows:

- Authors’ names
- Titles of article, book, report, theses or dissertation
- Edition numbers of book or report number of report
- Location of publisher (in the case of a book)
- Name of journal, publisher, conference, sponsor or report or the word Transactions or Proceedings followed by name of report
- Location of journal, conference, sponsor or society if not well known
- Volume number, issue number, month (abbreviated) and year of journal article or report. Year of book, Theses or dissertation
- Inclusive page numbers of journal articles.

2.1.3 Punctuation guidelines

- Comma is inserted after author’s surname, but full stops are inserted after author’s initial(s)
- Names of journals are written in full unless the abbreviation is accepted practice in the relevant discipline
- Titles of books, reports, Theses, specifications and journals are capitalized; those of articles submitted to journals and conference transactions and proceedings have the first word only capitalized
- Titles of books and journals are either typed in italics, typed in bold print or underlined
2.1.4 Examples of citation for different types of publication

Journal article:

Book:

Transactions or Proceedings:

Theses or Dissertation:
Patton, F.D. Multiple Modes of Shear Failure in Rock and Related Materials, PhD Theses, University of Illinois, Urbana, Ill, 1966.

Conference reference:

Discussions or Closures:

Specification or Code of Practice:

2.1.5 Bibliography
Any supplementary literature not referred to in the text, but considered to be relevant and of interest, may be put after the references in a Bibliography.

3 HEADINGS AND NUMBERING
The arrangement of headings of various levels (hierarchical positions) reflects the organization of the contents of the thesis.

The levels of headings may be indicated by typeface and format alone. For example, the heading ‘TWO-PHASE FLOW’ is recognizably of higher level than ‘Onset of flow instability’.

The numbering of such headings further clarifies the importance, sequence and interrelation of the portions of text under each heading. Thus, the headings ‘2 TWO-PHASE FLOW’ AND ‘2.3.3 Onset of flow instability’ are more informative than those in the example above.

Numbering also facilitates cross-referencing within the text: compare the economy of ‘...see 2.3.3 ...’ with ‘... see Onset of flow instability in the TWO-PHASE FLOW...’.

3.1 Rules for numbering
The recommendations given below are compatible with the International Standard ISO 2145 (1978).

- First level headings (usually chapter headings) of a thesis are numbered continuously beginning with ‘1’
- Each main division of text (chapter) may be divided into any reasonable number of subdivisions, having second level headings which are also continuously numbered. This method of division and numbering can, in principle, be continued to any level, but tends to become clumsy and confusing at the fourth level and beyond
- Numbering should thus be confined to the first three levels. Further (unnumbered) levels of headings may be identified by typeface and format (see 3.2)
- The numbers designating headings of different levels are separated by full stops (the present document serves as an example). No full stop appears after the last number; if only one number (that of a first level heading) is present (thus, ‘2 TWO-PHASE FLOW’ and not ‘2. TWO-PHASE FLOW’)

3.2 Typeface and format

(Updated in 2017 and approved by the Science Faculty Board on 11 October 2017)
The typeface and format of all headings should reflect their levels, independently of numbering. The typographical details of the system of headings will be dictated largely by the printing system that is used in final production of the thesis. Whatever the typography, it is essential that the system be logical and that it be applied consistently.

Modern practice favours left-hand-justified, rather than centred headings. Note also, that no full stop appears at the end of a heading.

3.3 Examples of systems of headings

1 FIRST LEVEL HEADING (Bold) or CHAPTER 1 (Bold)

1.1 Second Level Heading (Bold)

1.1.1 Third level heading (Bold)

Fourth level heading (Bold and/or Italics)

Fifth level heading (Bold and/or Italics). This leads into the text on the same line.

4 STYLE AND PUNCTUATION

Style implies choice. However, in technical writing there are also constraints which limit choice. The following are some points which must be considered in thesis writing.

4.1 Text structure

A good thesis should be comprehensive and precise. The author should take care to presentation their arguments concisely. The author should proof read their draft carefully and critically being mindful to eliminate unnecessary material. Should the author have trouble in presenting their thesis in English, they should seek help in this draft reading process.

The following are some of the techniques that will help:

- Break down complex statements into lists;
- Use the active voice where appropriate;
- Do not use pompous words or jargon where simpler words are as effective;
- Avoid empty phrases such as ‘it is interesting to note that…’; and
- Avoid unnecessary words, e.g. ‘the precipitate was found to be in a wet condition’ which means simply that ‘the precipitate was wet’.

4.1.1 Word choice

Use of the personal pronoun

The argument against using personal pronouns in theses is that the subject matter is the important thing and the author is not. However, should this lead to vagueness in phrases like ‘it is considered’ or to ponderous writing like ‘the author is of the opinion’, then it is better to use a personal pronoun, e.g. ‘I consider’ or ‘I think’.

Technical language and jargon

Technical language is a necessary part of scientific writing. The writers must, however, be certain that their audience will understand the language they use. Where there is doubt, they should define their terms, either in the text or in a glossary.

For example, ‘The hydrostatic loss appears to be responsible for dumping (or weeping) from sieve places…’ is acceptable in a thesis intended for readers familiar with distillation terms and concepts, but the statement becomes mere jargon where the potential readers may not be experts in the field.

Ordinary English may be misused by using intransitive verbs. One cannot react alcohol with acetic acid or state that alcohol was reacted with acetic acid. These statements are grammatically incorrect.

Jargon is often created by introducing strange and unnecessary new words. For example, colonise, oxidise and analyse are acceptable through general usage, blendorise, insolubilized and solubilization are not: however frequently they may be used in a chemical laboratory.

4.1.2 Tenses

A guide like this cannot cover the ramifications of the uses of tenses in thesis writing. The following points may help, however, to avoid the more common errors:

- Reports of work done are usually written in the past tense;
- Universal truths, such as natural laws, are generally stated in the present tense;

(Updated in 2017 and approved by the Science Faculty Board on 11 October 2017)
• Do not change tenses in a sentence unless there is good reason for it. For example, if we say, ‘the balloon rose because the hydrogen inside it was lighter than air’, we may mean that this might apply only under the observed conditions; or we may mean that the gas used is inherently lighter than air. To make the meaning clear we must mix tenses within the sentence, e.g. ‘the balloon rose because hydrogen is less dense than air’. But complications arise when tenses are changed without the writer having had a specific intention in mind.

4.1.3 Sentence structure
Active and passive voice
Traditionally technical writers have regarded the passive voice as the only acceptable form of presentation. In modern writing, however, the active voice is used far more often. Phrases like ‘Economy justifies the procedure’, are preferred to ‘the procedure may be justified in the interest of economy’.

Sentence length
Long sentences with a number of dependent clauses are difficult to follow, particularly if the subject itself is complex. Reading tests have shown that sentences with more than 25 words are generally difficult to comprehend.

4.1.4 Paragraphing
Paragraphs are there to help the reader. They do so by breaking up the text into manageable sections. This objective is often not achieved because of poor paragraph construction. The following guidelines will assist in organising paragraphs:
• A paragraph should consist of a central statement supported by a group of details;
• In technical writing the main statement is usually at or near the beginning. For argument or persuasion, however, the central statement is often placed at the end as a climax to the supporting details;
• The transition between paragraphs should be smooth, with some form of connecting link in the text; and
• Long unbroken sections of text are discouraging to the reader and therefore paragraphs should not be unduly long. If your writing has many paragraphs exceeding 100 words, you should examine it critically.

4.2 Conventions
4.2.1 Capitals
There is much confusion about the use of capitals and authorities differ considerably. The modern trend is to use capitals sparingly. The following are some general guidelines:
i. The first word in a sentence and in a direct quotation are capitalized; proper nouns are capitalized and common nouns such as river and company are also capitalized when they form part of a name e.g. Amazon River; and
ii. Common nouns are capitalized when they are used with a number or letter to designate a specific thing, e.g. Laboratory D.

4.2.2 Acronyms
An acronym is a word formed from the initial letters of a name or by combining initial letters, or parts of a series of words, e.g. ‘radar’: RA(dio) D(etecting) A(nd) R(anging). Certain acronyms like, ‘radar’ have become dictionary words. In general, however, use acronyms sparingly and, when using them for the first time, spell them out. Where the acronym is not an accepted dictionary one it should be in capitals, e.g. NATO.

4.2.3 Spelling
In a language as complex as English there is no simple set of rules. When in doubt (e.g. when to use ‘s’ and when ‘z’) consult the Shorter Oxford English Dictionary (1973) which gives the accepted standard English spelling (preferred to the American) or Oxford Dictionary for Writers and Editors (1981). We highly recommend you use the Oxford English Dictionary (OED) available online at

This dictionary, in addition to guidance on spelling, gives useful information on punctuation.

4.2.4 Abbreviations
Use only generally accepted abbreviations and symbols.

4.2.5 Punctuation
There are some 36 chief marks of punctuation. However, many of these are used only in specialised linguistic contexts and all should be used sparingly. For a concise guide to the use of the more common punctuation marks see Houp and Pearsall (1984).
4.2.6 Pagination
Pagination (page numbering) should run consecutively through the thesis with all pages (including figures, tables, numbered, etc).

5 NON VERBAL MATERIAL
The customary medium of communication is language. However, in the sciences and engineering extra-linguistic material such as numbers, symbols, mathematics, tables, graphs and illustrations of various kinds are frequently used. A cardinal principle for such material is that it should be used only when it is the most effective means of communication and understandable to the target audience.

5.1 Numerals
The rules for the correct use of numbers are simple and are in the main based on common sense. In the text use words rather than numerals below ten. Exceptions to this rule occur in illustrations and tables, or when integers are associated with unit symbols. For numerals above ten, use whatever provides optimal clarity and appearance:
- Where it is necessary to have decimal fractions these should be expressed in numerals, e.g. 'the original design required 2.7 times as many components as were finally used’. Do not begin a sentence with a numeral. This can lead to confusion and is in any event displeasing to the eye;
- Ordinals from ‘first’ to ‘tenth’ should be written out. For higher ordinals the author should once again use their discretion; and
- Avoid writing out large and small numbers by using either accepted prefixes or exponential notation, e.g. \(253 \times 10^3\) or \(0.253 \times 10^6\). Where large numbers must be written out these should be separated by a small space into groups of three counting from the left or right of the decimal sign, e.g. 5 241,2. For numbers less than unity, a zero should precede the decimal sign, e.g. 0.352. When listing numbers – as in a table – always align them on the decimal sign. In South Africa the decimal comma was initially used instead of the decimal point but common practice is now a point.

5.2 Mathematics
Mathematics included in a text should form an integral part of the argument and should be intelligible to the intended readers.

Mathematics must be carefully presented – using typewritten symbols as far as possible and putting in the remainder neatly in ink. This should no longer be necessary as computer software provides all mathematical and notion needed. The units and symbols used should be consistent and follow international practice as detailed in British Standards Institution (2010) or International Organization for Standardization for Standardization (2010).

The form of presentation of a mathematical expression should be such that it:
- Brings out clearly the structure of the expression and
- Is as simple as possible to type

To comply with the last two points, algebraic fractions in the text should make use of a solidus and not a horizontal bar. Thus write \(\frac{a + b}{c + d}\) and not \(\frac{a + b}{c + d}\). However, note that careless use of the solidus can lead to ambiguities. Thus \(\frac{a + b}{c}\) means \(\frac{a + b}{c}\) and not \(\frac{a}{b}\). Such ambiguities can generally be overcome by the use of parentheses, as in \(\frac{a + b}{c}\), \((a + b)\), and \(\left(\frac{a + b}{c}\right)\). Be sure that all parentheses and brackets occur in pairs.

Exponential expressions should be set up as \(2^{\frac{1}{2}}\) or \((2x)^{\frac{1}{2}}\) rather than as \(\frac{2^{\frac{1}{2}}}{2x}\). However, with more complicated expressions the foregoing rules may violate the conditions above. It may then be necessary to simplify the expression or set it out on a line all to itself. For example:

\[
\frac{1}{2 \pi n_1 h_1} + \frac{1}{2nk \ln \left(\frac{r_1}{r_2}\right)} + \frac{1}{2m_2 h_2}
\]
can be set out as:

$$T = \int_{t_0}^{t_1} \frac{dR}{R} \quad \text{where,}$$

$$R = \frac{1}{2n_k h_1} + \frac{2n_k}{\ln \frac{R}{r_1}} + \frac{1}{2n_k h_2}.$$

Modern practice favours central justification on all equations, as shown above, rather than vertical alignment of equal signs. Where the right hand side of an equation is too long to fit on one line, a break should be made before an operational sign (e.g., + or -) or at some other logical point, but preferably not within a bracketed statement. The next line, starting with an operational sign, should then be placed just to the right of the equal sign. It may, however, not always be possible to avoid breaking a statement within a bracket. In this case the above rule should be observed as far as possible, as illustrated in the following example:

$$\phi = \frac{1}{\gamma} \left[F(\gamma_{1A_1})\phi_1\phi_2dV + F(\gamma_{2A_1})\phi_3\phi_2dV + F(\gamma_{1A_1})\phi_4\phi_2dV - F(\gamma_{2A_1})\phi_4\phi_2dV \right]$$

where,

$$\gamma = \frac{\phi_1 + \phi_2 + \phi_3}{\phi_1\phi_2dV}.$$

Particular care is required in the use of subscripts and superscripts. They should be placed next to the main symbol and half a space below or above it respectively. Where both are used they must line up vertically,

i.e., v_1 not v_1. Thus, ϕ_1^2 should become ϕ^2 and F_2 becomes F_{2x}. Periods are generally omitted in abbreviations, e.g., f not f.

Standard symbols should be used wherever possible and the recognized literature in the field consulted for references to these.

LaTeX is convenient for preparing mathematical type for theses, dissertations and research reports.

5.3 Tables

Tables are best used when data cannot be clearly presented in graphical form. For example, discrete data sets can frequently be compared more effectively by using a bar chart than a table. In one sense a table is a form of graphical presentation. As such it should be kept simple and clear. Only relevant information of conclusions should be included. There is no need to put in all intermediate steps or results – they only cloud the main issue.

Tables can be arranged either vertically or horizontally. Vertical tables are those which can be read when a page is in the normal position. Clearly they are the most convenient to read. Where possible they should be arranged to fit into a single page of the document. Horizontal tables are used where their size is such that they cannot be fitted into the width of the printed page.

Each table should have a heading and be numbered with Arabic numerals. Tables in theses should be numbered as follows:

- Firstly by the number of the main text division (chapter) in which they occur.
- Secondly, by Arabic numerals running consecutively through that text division.

The two numbers are separated by a full stop. Thus, the first table in Chapter 2 is Table 2.1, the second table in Chapter 2 is Table 2.2 etc. The same principle holds for lettered appendices, but the full stop is omitted. Thus the third table in Appendix E is Table E3. Tables should be referred to in the text by means of the table number.

Tables in papers for journal publication are numbered (without reference to the main text division) consecutively with Arabic numerals throughout the text. The columns in a table should be arranged for easy comparison, related information being brought together. Each column should carry a brief heading and include consistent units where relevant. The same symbols, units, and abbreviations should be used in the text. Table 5.1 illustrates some of these rules.

Table 5.1 Calibration of rotameter

<table>
<thead>
<tr>
<th>Position of Float</th>
<th>Flow rate (m3/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Updated in 2017 and approved by the Science Faculty Board on 11 October 2017)
In column headings avoid using expressions like $x10^{-3}$ as these are ambiguous. It is not clear whether the figures in the column have already been multiplied by 10^{-3}. Rather use the recognised metric prefixes, e.g. ‘mm’. Where this is not possible, make sure the heading is unambiguous even if it appears clumsy. For example, use ‘Capital cost:Rm’ rather than ‘$x10^6$ = Capital cost in R’.

5.4 Illustrations

All illustrations (graphs, photographs, drawings and diagrams) are referred to as Figures. Each has a number and a descriptive title which should be placed below the illustration. Numbering follows the same principles as those for tables (see 5.3). Thus, the first figure in Chapter 2 is Figure 2.1, the second Figure 2.2 etc. The third figure in Appendix E is Figure E3.

Figures in papers for journal publication are numbered consecutively with Arabic numerals throughout the text.

5.4.1 Graphs

3D-graphs can take on a number of different forms, e.g. bar charts, divided circles, pictographs, or line graphs. The appearance of a graph is its major attribute. It is, therefore, up to the writers in choosing one of these forms, to decide on the impression they wish to convey. As line graphs are most frequently used in scientific and technical work, attention here will be directed primarily to this type. Line graphs are mainly used to show the relationship between a continuously varying independent variable and one or more of its dependent variables. Wherever possible use should be restricted to this purpose. In preparing graphs for inclusion in a thesis the following should be borne in mind:

- The graphs should illustrate clearly the point which the writer wishes to make;
- The scale chosen should be such that only the relevant parts of the curve are presented, that is, the grid should not be extended unnecessarily beyond the limits of the curve to be shown;
- If it is necessary to suppress the zero this should be clearly shown;
- The choice of grid size depends on the accuracy required;
- The scale should be easy to read and be restricted to multiples and submultiples of 10;
- Units should be clearly stated and written so that they can be read easily;
- The caption should be brief but self-explanatory and be positioned underneath the graph; any notes or supporting documents, if necessary should be placed below the title; and
- To ensure clear reproduction graphs should not be overburdened with detail.

Fig 5.1 is an example of a good graph.
Graphs should be drawn on high quality paper. The lines should usually be at least 1mm thick and number or figures should not be too small.

5.4.2 Drawings, diagrams and photographs
Line drawings and diagrams are made up of lines, words and a few special symbols. They must, as far as possible, be simple and uncluttered with detail: working drawings are normally not acceptable. Unless they serve to clarify the verbal content of the report, or express an idea more vividly than words can, drawings or diagrams serve no purpose. Only generally accepted graphic symbols should be used.

The inclusion of photographs may occasionally prove useful and sometimes even necessary. If they are to be used they should be taken with care. Cluttered backgrounds and views of unrelated equipment should be avoided. Adequate contrast should be provided, and care taken so that important details do not fall into shadows or become obscured by the glare of highlights. Some sort of scale should be included so that the size of the object is reflected. Lettering on prints may be necessary, but care should be taken to ensure that the letters stand out.

Any illustrative material which cannot effectively be reduced to A4 format, but which is relevant may be included in a pocket on the inside back cover of the thesis or included as foldouts.

6 PRODUCTION OF THE THESIS
6.1 Type layout
A thesis should be typed. A clear font such as Arial or Times New Roman should be used. Italic script or other unusual type faces should generally be avoided unless they are necessary. A font size 10 or 12 should be used. The font colour must be black.

The main body of the text should be typed in one or one and a half line spacing and generous margins should be allowed. Typed pages should be aligned at a constant distance from the top and bottom of the page, although the top margin of the first page of a chapter may be lowered slightly. (A specimen page layout is shown in Appendix E.)

The following are suggested dimensions of margins:
Top, bottom and right: 30 mm
Left: 40 mm

All work should be justified to the left margin and should not normally be indented. Avoid full justification of text as it reduces the readability of the thesis. Use a double line space to indicate a new paragraph.

A good quality white bond paper of A4 size should be used. First submissions should be printed back to back and bound. Final submissions should be printed on one side only and unbound.
6.2 Illustrations
Illustrations form a very important part of a thesis and should be carefully prepared. Whatever method of reproduction is to be used for their presentation in the thesis, the essential requirements are that a table or illustration should be neat, concise, legible and, above all, comprehensible. Originals of photographs are not necessarily required but it is essential that any reproduction of a photograph, such as a photocopy, is clear.

7 EDITING AND REVISING
7.1 Checking, rectifying and polishing
Editing the first draft is the authors’ responsibility; they cannot expect their supervisors or any outside person to:

- determine the accuracy of the information;
- clarify ambiguities;
- emphasize important issues; and
- check spelling.

The editing process is essentially one of critical evaluation of the manuscript against the requirements set by the objectives of the research. The main requirements are those of content, or orientation to the reader and of accuracy, brevity and clarity in the functional writing style. The author should evaluate each chapter of their thesis and check whether it:

- Has real content;
- Is free from inaccuracies, ambiguities and bias;
- Emphasizes important issues and is free from verbosity, irrelevancies and unnecessary detail;
- Can be understood readily; and
- Is appropriate to the situation.

Before starting the process of checking, rearranging and polishing, the writers should preferably leave their draft for a few days so that they can mentally switch to the role of a critical reader.

The editing consists of three operations which should be done separately. These are:

- The integrity edit;
- The logical progression edit; and
- The text and language edit.

7.1.1 Integrity edit
The contents page should be examined and the following points checked:

- Are the headings and subheadings clear descriptions of what is covered?
- Do they form a recognizable logical pattern and is the numbering system used a reflection of this pattern?
- Are the headings grammatically parallel?

Next the text should be checked page by page for the following:

- Are the headings and numbers identical to those used in the list of contents?
- Are the tables and figures properly numbered and in sequence, and do they have informative headings and captions?
- Are tables, figures and references correctly cited in the text?

7.1.2 Logical progression edit
Each chapter should be read as rapidly as possible to:

- Check that the objective is clearly stated and that the concluding section shows whether or not the objective was achieved;
- Check that the logical thread is apparent; any jumps or gaps in the progression are usually an indication of faulty organization; mark these, but do not correct at this stage; and
- Check in particular whether sections contain anything which does not belong there.

The conclusions list should arise from the discussion. Structural defects must be corrected before the text and language edit.

7.1.3 Text and language edit
Only when one is satisfied with the basic format of the report should one concentrate on the structure of the text and the use of language. The text may include non-verbal components such as graphs and illustrations. These should be evaluated as part of the text. The criteria for evaluating functional writing, mentioned before are:

- Accuracy – sufficient for the needs of the audience;
- Brevity – leaving out irrelevancies and at the same time covering the essentials adequately;

(Updated in 2017 and approved by the Science Faculty Board on 11 October 2017)
7.2 Graphic material
Essentially the same criteria used in the language edit, viz accuracy, brevity, clarity and emphasis can be applied to graphic communications.

One of the main reasons for using graphics is their ability to give overall view and show relationships. Any graphic material which fails in these important areas probably does not justify the extra effort of using it.

7.3 Time and space separations
Most theses are prepared for consideration within a short time and often for a local audience. However, once accepted, a thesis becomes part of the body of scientific literature. Writers should therefore draw attention to information that is only valid for a short time. The writer should be aware that points which are valid locally (e.g. under Highveld condition an altitude of about 1500m) are not necessarily valid generally. For instance, a recommendation to install solar heating panels on north facing roofs will not make sense in the northern hemisphere.

Cost data are also subject to variation by place and in time, and the exchange rate and other relevant factors may have to be specified to make matters clear.

7.4 The external viewpoint
Authors may claim to be objective. Usually they are not – at least, not to the extent required for a good manuscript. Therefore the external readers’ viewpoints are needed. This can be provided by supervisors or critical colleagues who do not have to be experts in the subject of the manuscript, but who must be able to place themselves in the position of the intended audience. They should be skilled in recognising the errors authors make and should annotate the manuscript accordingly and, in addition, suggest ways of improvement. The best manuscripts are produced by a co-operative interaction of authors, supervisors and independent editors.

7.5 Rewriting
Of all tasks, rewriting a text is the most unpopular, yet if we wish to develop a clear style it is usually essential. Editing tends to concentrate on the correction of errors rather than elegance of diction. Rewriting all or a substantial part of the text is usually the only way of getting an elegant well-balanced text.

7.6 Readability of texts
One of the main objectives of editing is to improve the readability of the text. The factors affecting readability have been extensively studied and various indices have been proposed. Most of these, however, were developed for school textbooks or general reading. Comparatively little work has been done on assessing their relevance to technical writing. For this reason readability measures should be used with caution in evaluating technical writing. This applies particularly where the index is given as a measure of reading age. In spite of this, readability measures have a role in comparing texts and are useful in placing them in a rank order of readability.

One of the simplest to use is the Gunning Fog Index. This measure depends on two factors, sentence length and percentage of ‘difficult’ words. The procedure for calculating the Fog Index is as follows:

- Select a passage of about 100 words of continuous prose (avoid passages containing lists);
- Calculate the average number of words per sentence, i.e. average sentence length (l);
- Calculate the percentage (p) of difficult words. This is done by counting the number of words containing three or more syllables and expressing this number as a percentage of the total number of words in the passage. Three-syllable words ending in –ed or –es, words that are normally capitalized and coupled short nouns (e.g. bookkeeper) are not counted;
- Calculate the fog index using formula; and
- Fog index = 0.4 (l + p)

Texts with an index below 10 may be staccato, while those above 16 may be unnecessarily difficult. It must be emphasized that the Fog Index is one of many criteria that can be used to evaluate texts. A skilled worker can produce readable long sentences while a poor writer can make a short sentence difficult to read.
7.7 **Computer editing**
Editing programmes must be used. These include spelling and grammar checks, calculation of readability indices and the production of an index.

7.8 **Outline processor, spelling checker, cross referencing facilities, index and/or contents**
Authors of theses are advised that the modern trend is to prepare your thesis yourself – right from the start.

8. **LAWS AND REGULATIONS**

8.1 **Copyright laws**
The copyright Act 98 of 1978 which is the act currently in force in South Africa applicable to both published and unpublished sources. Direct quotations from another work are permitted to a reasonable extent for the purposes of research provided that the source and name of the author are acknowledged. Subsequent publication of the thesis as a book necessitates the explicit approval of the copyright holder for this purpose. In this connection, thesis writers should be aware also of University Rules and Regulations in the Faculty of Science Rules and Syllabus Book.

The thesis, dissertation or other work shall:
- Include an abstract of not more that 350 words for a doctoral thesis and not more than 150 words for a master’s dissertation; and
- Conform as far as possible to the style and format recommended in the style guide for theses and dissertations.

Formal Declaration
Together with their thesis, dissertation or other work the candidate shall submit a formal declaration stating whether:
- It is their own unaided work or, if they have been assisted, what assistance they have received;
- The substance or any part of it has been submitted in the past or is being or is to be submitted for an award at any other university; and
- The information used in the thesis, dissertation or research report has been obtained by them while employed by, or working under the aegis of, any person or organisation other than the university.

(Updated in 2017 and approved by the Science Faculty Board on 11 October 2017)
APPENDIX A

SPECIMEN TITLE PAGE

A SURVEY OF THE GENUS PYRAMIMONAS SCHMARDÁ (PRASINAPHYCEAE) FROM SOUTHERN AFRICAN INSHORE WATERS

Dhiya Singh

A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science

Johannesburg, 2017

(Updated in 2017 and approved by the Science Faculty Board on 11 October 2017)
SPECIMEN CONTENTS PAGE

CONTENTS

DECLARATION ii
ABSTRACT iii
ACKNOWLEDGEMENTS iv
LIST OF FIGURES vii
LIST OF TABLES viii

CHAPTER ONE – INTRODUCTION

1.1 General Introduction 1
1.2 Objectives 1
1.3 Literature Review 2
 1.3.1 Green Algal Phylogeny 2
 1.3.2 The Class Prasinophyceae 2
 1.3.3 The Genus Pyramimonas 16

CHAPTER TWO – METHODS AND MATERIALS

2.1 Sampling 86
2.2 Enrichment Culture 86
2.3 Culture Medium and Glassware 86
2.4 Isolation 88
2.5 Screening of isolates – identification 89
2.6 Culture maintenance 90
2.7 Light Microscopy 90
 2.7.1 Light Microscopy Data Capture 90
2.8 Electron Microscopy 91
 2.8.1 Fixation and Embedding 91
 2.8.2 Sectioning 91
 2.8.3 Staining and Viewing 92
 2.8.4 Data Capture 93

CHAPTER THREE – The Subgenus Vestigifera

3.1 Introduction 94
3.2 Results and Discussion 94
 3.2.1 Pyramimonas disomata Butcher 95
 3.2.2 Pyramimonas mitra Moestrup et Hill 110
 3.2.3 Pyramimonas norrisii Sym et Pienaar 119

(Updated in 2017 and approved by the Science Faculty Board on 11 October 2017)
6.3.2 Chloroplast Colour and Shape 281
6.3.3 The Pyrenoid 281
6.3.4 The Eyespot 282
6.3.5 Supernumerary Flagella 283
6.3.6 The Glagellar Apparatus 283
6.3.7 Microtubular Roots 283
6.3.8 The Scale Reservoir 285
6.3.9 Scale Morphology 285

CHAPTER SEVEN - General Discussion and Conclusion

7.1 Taxonomic Considerations 287
 7.1.1 The Genus Pyramimonas 287
 7.1.2 The Subgenus Vestigifera 292
 7.1.3 The subgenus Trichocystis 293
 7.1.4 The Subgenus Punctatae 294
 7.1.5 The Subgenus Pyramimonas 295
 7.1.6 Taxonomic Conclusions 297

7.2 Phylogenetic Considerations 300
 7.2.1 Prasinophycean Phylogeny 300
 7.2.2 The Phylogeny of Pyramimonas 308

7.3 The Class Prasinphycea 313

8 REFERENCES 315
9 APPENDIX 328

APPENDIX C

SPECIMEN LIST OF FIGURES

LIST OF FIGURES

Figure 1: Summary 13
Figure 2: Diagram to illustrate the re-arrangement to flagellar bases in quadriflagellate
 And octoflagellate Pyramimonas species through 3 to 4 generations 35
Figure 3: The generalised life history of Pyramimonas 38
Figure 4: Types of body underlayer scales 42

(Updated in 2017 and approved by the Science Faculty Board on 11 October 2017)
Figure 5:	Types of box scales	43
Figure 6:	Types of crown scales sensu Pennick (1984)	49
Figure 7:	Cell symmetry and the definition of sides in quadriflagellate and octoflagellate species of Pyramimonas	49
Figure 8:	Types of pyreoid found in Pyramimonas	53
Figure 9:	Structure of the axoneme, transition region and basal body in Pyramimonas	63
Figure 10:	Diagrammatic representation of the three types of flagellar apparatus configurations at the distal level and in apical view, and the basal body numbering in Pyramimonas	67
Figure 11:	A diagram of the structures found in the generalised flagellar apparatus of Pyramimonas	71
Figure 12:	Map of southern Africa and details of the Cape peninsula to show the location of the sampling sites	87
Figure 13:	Light microscope drawings of Pyramimonas disomata Butcher	96
Figure 14:	Light microscope drawings of Pyramimonas mitra Moestrup et Hill	111
Figure 15:	Light microscope drawings of Pyramimonas norrisii Sym et Pienaar	120
Figure 16:	Light microscope drawings of Pyramimonas obovata N Carter	127
SPECIMEN LIST OF TABLES

Table 1: Principle features of the four major classes of advanced green algae

Table 2: Representative genera of the class Prasinophycea and their salient features

Table 3: Microtubular root systems within the Prasinophycea

Table 4: Species of Pyramimonas encountered in southern African waters and the subgenera to which they belong

Table 5: Sample sites and their localities
SPECIMENT PAGE LAYOUT

First line on full text page

CHAPTER LINE

First line under chapter heading

Outer line represents edge of paper and inner one typing area
BIBLIOGRAPHY

Note: This select list of sources consulted in the compilation of the Guide has been arranged according to the Harvard method.

